
Flow of Non-Newtonian Polymeric Solutions Through
Fibrous Media

B.N. DHOTKAR,1 R. P. CHHABRA1, V. ESWARAN2

1Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India 208016

2Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India 208016

Received 19 April 1999; accepted 16 September 1999

ABSTRACT: The equations of motion (continuity and momentum) describing the steady
flow of incompressible power law liquids in a model porous medium consisting of an
assemblage of long cylinders have been solved numerically using the finite difference
method. The field equations as well as the pertinent boundary conditions have been
re-cast in terms of the stream function and vorticity. The inter-cylinder interactions
have been simulated using a simple “concentric cylinders” cell model. Extensive infor-
mation on the detailed structure of the flow field in terms of the surface vorticity
distribution, streamlines, and viscosity distribution on the surface of the solid cylinder
as well as on the values of the pressure and friction drag coefficients under wide ranges
of physical (0.4 # e # 0.95; 1 $ n $ 0.4) and kinematic (0.01 # Re # 10) conditions have
been obtained. The numerical results presented herein have been validated using the
experimental results for the flow of Newtonian and power law fluids available in the
literature; the match between the present predictions and the experiments was found
to be satisfactory. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1171–1185, 2000
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INTRODUCTION

The steady flow of incompressible non-Newtonian
polymeric systems (melts and solutions) relative
to an array of long cylinders represents an ideal-
ization of many industrially important processes
frequently encountered in polymer and chemical
engineering applications. For instance, in the
commonly used autoclave process of manufactur-
ing fiber reinforced composites, the flow of resin
through a bed of fibers accompanied by consolida-
tion denotes an important step in the overall pro-
cess.1–3 Other examples where this flow configu-
ration is encountered include paper and textile
coating operations, the filtration of polymer melts

using a bed of screens prior to various shaping
and molding operations,4 enhanced oil recovery
via polymer flooding,5 the flow in the shell of
tubular heat exchangers and the membrane mod-
ules,6–8 and so on. Finally, the flow through an
array of cylinders has also been frequently used to
mimic the flow of non-Newtonian fluids in porous
medium to elucidate the role of the successive
convergent-divergent nature of the flow passag-
es.9–12 Owing to its overwhelming pragmatic and
theoretical significance, over the years consider-
able research effort has been directed at develop-
ing a better understanding of the flow of fluids
through such a model system, which in turn fa-
cilitates the understanding of flow in real fibrous
porous media. Consequently, a wealth of informa-
tion is now available relating to the flow of New-
tonian fluids, which has been reviewed by several
authors.1,13 Clearly, the estimation of the fluid

Correspondence to: R. P. Chhabra.
Journal of Applied Polymer Science, Vol. 76, 1171–1185 (2000)
© 2000 John Wiley & Sons, Inc.

1171



dynamic resistance to the flow of a fluid repre-
sents one of the most important design parame-
ters. This information is conveniently expressed
in terms of either a permeability of the system or
a drag coefficient or in terms of a friction factor.
Obviously all of these are inter-related and are
not mutually exclusive, at least in the low Reyn-
olds number region. Based on the detailed com-
parisons presented in the literature, it is perhaps
fair to state that satisfactory methods of estimat-
ing the resistance to flow of Newtonian fluids in
such model fibrous media are now available in the
literature (e.g., see refs. 13,14). In contrast to this,
much less is known about the analogous flow of
non-Newtonian fluids in this flow geometry, and
the present study represents a step in the direc-
tion of bridging this gap in the existing literature.
However, before undertaking a detailed discus-
sion of this study, it is useful and instructive to
briefly summarize the salient features of the pre-
vious studies available in this field.

PREVIOUS WORK

In spite of the aforementioned overwhelming im-
portance of this flow configuration in relation to
many applications in polymer processing, the flow
of non-Newtonian fluids relative to an array of
long cylinders has received only very limited at-
tention, both analytically as well as experimen-
tally, whereas the pertinent literature for Newto-
nian fluids has been reviewed recently.13,14 As far
as known to us, there have been only three theo-
retical analyses reported in the literature. Skart-
sis et al.15 have numerically studied the flow of
power law fluids normal to square arrays of dif-
ferent spacing (characterized in terms of an over-
all mean value of voidage) composed of long cyl-
inders and they reported fair agreement with the
predicted and experimental values of the resis-
tance to flow expressed in terms of a dimension-
less Kozeny coefficient, for the limited range of
conditions of porosity and power law index stud-
ied. On the other hand, Tripathi and Chhabra14,16

employed the well known variational principles
and obtained upper and lower bounds on the flow
resistance as a function of the bed porosity and
rheological parameters for both power law and
Carreau viscosity models under wide range of
conditions. In the latter studies, a cell model was
used to simulate the inter-cylinder interactions.
Detailed comparisons between these predictions
and experimental results for the flow of Newto-

nian fluids through fibrous media demonstrate
the general applicability of this approach.14,16,17

However, the corresponding comparisons for
power law fluids were seen to be not only very
limited but also less satisfactory. One possible
reason is the approximate nature of the upper
and lower bounds themselves that increasingly
diverge as the degree of shear thinning behavior
of the fluid increases, albeit the possible viscoelas-
tic effects present in the some of scant experimen-
tal results cannot be ruled out. In addition, there
is really no justification for using the arithmetic
mean of the upper and lower bounds. All these
studies relate to the so-called creeping flow only,
i.e., zero Reynolds number and hence are appli-
cable only at low Reynolds number of flow. On the
other hand, Adams and Bell6 and Prakash et al.7

have reported the experimental values of the re-
sistance to flow of purely viscous polymer solu-
tions for in-line and staggered square arrays of
cylinders, and both of them put forward empirical
expressions for friction factor encompassing mod-
erate values of Reynolds number.

All in all, it is thus safe to conclude that very
little is known about the flow of non-Newtonian
fluids (even for purely viscous models) past an
array of circular cylinders and the available in-
formation is limited only to the creeping region.
Admittedly most polymeric solutions and melts
display varying levels of shear thinning and vis-
coelastic characteristics. An ultimate analysis
should therefore incorporate the role of both these
rheological characteristics. It is, however, prefer-
able to build up progressively the level of com-
plexity, and therefore to keep the complexity at a
tractable level, it is proposed to elucidate the role
of shear thinning viscosity in this flow configura-
tion. In addition, because the flow rate (and ve-
locity) is usually small and the corresponding De-
borah number would therefore be small, this sug-
gests that the viscoelastic effects would be of
secondary importance. This should further dimin-
ish with the increasing porosity of fibrous beds
and the resistance to flow is primarily governed
by shear viscosity under these circumstances.
Therefore, this work should be seen as the first
building block in the overall analysis. In this
work, the equations of motion coupled with the
cell model have been solved numerically to inves-
tigate the flow of power law fluids past (normal to)
a collection of long cylinders. The Reynolds num-
ber of flow has been varied from 0.001 to 10,
which is typical of applications in such porous
media flows. In addition to the detailed kinemat-
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ics of flow, overall gross parameters such as flow
resistance have been evaluated as a function of
the pertinent physical and kinematic variables.
The paper is concluded by presenting detailed
comparisons with the previous scant theoretical
as well as experimental results available in the
literature.

PROBLEM STATEMENT AND IDEALIZATION

Consider the steady and axisymmetric incom-
pressible flow of an inelastic power law fluid nor-
mal to an array of long cylinders as shown sche-
matically in Figure 1a. Due to the axisymmetry,
no flow variable depends upon the z coordinate
and Vz 5 0. In cylindrical coordinates, the equa-
tions of continuity, r- and u- components of the
momentum balance in dimensionless form, are
written as18:
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The rheological equation of state for a power law
fluid is written as:

tij 5 2h«ij (4)

and

h 5 ~2)!~n21!/2 (5)

In eqs. (1) and (5), the velocity terms have been
scaled using the faraway streaming velocity Vo,
pressure has been scaled using 1⁄2 rVo

2, radial dis-
tance using the radius of cylinder R, the extra
stress components using m(Vo/R)n, and the second
invariant of the rate of deformation tensor II us-
ing (Vo/R)2. It is written in terms of the velocity
components as18:
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By introducing a stream function c (scaled using
VoR), the two velocity components Vr and Vu can
be written as:

Vr 5 ~1/r!~­c!/~­u! (8a)

Vu 5 2~­c!/~­r! (8b)

Similarly introducing the usual vorticity function
v(scaled as Vo/R) defined as:

v 5 2B2c (9)

Figure 1 (a) Schematic representation of flow; (b) free surface cell model represen-
tation.
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where the differential operator B2 [ (­2/­r211/r
­/­r 1 1/r2 ­2/­u2)
Similarly, rewriting eq. (7) using eqs. (8) and (9)
in terms of c and v:
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Now eliminating pressure between eq. (2) and eq.
(3) by the usual method of cross-differentiation,
i.e.,
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and introducing the stream function c and the
vorticity function v, together with some rear-
rangement, it leads to:
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Equation (12) is the generalized form of the
Navier-Stokes equation in terms of the stream
function and vorticity for axisymmetric flow of
power law fluids in polar coordinates. Note that
even though the main thrust of the present work
is on steady flow, the transient term has been
retained in the momentum equation because the
false transient technique was used to numerically
solve these equations as discussed in a later sec-
tion.

It is readily recognized that in addition to the
field equations, a mathematical description of the
inter-particle (cylinder-cylinder) interactions is
also needed to complete the problem description.
Amongst the various approaches available cur-
rently,19,20 the so-called free surface cell model19

has been shown to be moderately successful in
predicting the macroscopic fluid flow phenomena
in multiparticle systems, for example, flow resis-
tance for both Newtonian and inelastic fluids in
granular porous media,21–25 sedimentation of
clouds of fluid particles in quiescent power law
fluids,26,27 and of porous particles28. The range of

applications shows the extremely versatile nature
of this simple approach. Hence, in this study, the
inter-cylinder interactions will be modelled using
the free surface cylinder-in-cylinder model.

The free surface cell model19 postulates each
cylinder (of radius R) to be surrounded by a hy-
pothetical concentric cylindrical envelope of fluid
of radius R` such that the porosity of each cell is
equal to the mean voidage of the overall array.
Furthermore, each of such cells is made a nonin-
teracting type by imposing the boundary condi-
tion of zero shear stress on the cell boundary. This
approach thus converts a difficult many-body
problem into a conceptually much simpler one-
body equivalent. The free surface cell model as
applied to the present problem is shown in Figure
1b, together with the cylindrical coordinate sys-
tem employed in this work.

The physically realistic boundary conditions
thus now include the usual no-slip boundary con-
dition on the surface of the cylinder, i.e.,

At r 5 1 Vr 5 0 and Vu 5 0 (13a)

and cell boundary (r 5 r`) is assumed to be fric-
tionless, i.e.,

At r 5 R`,tru 5 0 and Vr 5 cos u (13b)

However, since the governing differential eq. (12)
has been written in terms of c and v, eqs. (13a)
and (13b) need to be expressed in terms of these
variables. This transformation leads to the follow-
ing equivalent boundary conditions that were ac-
tually used in the present numerical work:

On the cylinder surface (r 5 1):

z v 5 2
­2c

­r2 and c 5 0 (14a)

On the cell surface (r 5 r`):

z c 5 r` sin u (14b)

z v 5 2
2
r`

S­c

­r 2 sin uD (14c)

where the dimensionless cell radius r` 5 R`/R is
related to the voidage of the array e as:

r` 5 ~1 2 «!21/2 (15)
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Clearly, as the value of cell radius increases, i.e.,
the concentration of cylinders decreases (voidage
increases) and when it decreases, the value of
voidage decreases. Thus, by simply varying the
value of r`, different values of voidage of the array
can be accomplished.

In addition to the boundary conditions outlined
in eqs. (14a–c) the condition of symmetry was
imposed by satisfying c 5 0 and v 5 0 at u 5 0
and u 5 p planes.

Thus, eqs. (5), (8),(10), and (12) subject to the
conditions outlined in eqs. (13) and (14), together
with the symmetry condition at u 5 0 and u 5 p
lines provide the theoretical framework for map-
ping out the flow domain (1 # r # r`; p . u . 0)
in terms of the c, v and h as functions of r and u.
These results, in turn, can be processed further to
evaluate the components of the fluid drag exerted
on the cylinder using the following expressions:

CDP 5
1
2 E

0

2p

pr51 cos u du (16a)

CDF 5
2n

Re E
o

2p

~hv!r51 sin u du (16b)

where the CDP and CDF are the contributions due
to pressure and friction, respectively. The total
drag coefficient CD is simply the sum of these two
contributions and is related to the drag force FD
per unit length of the cylinder as follows:

CD 5 CDP 1 CDF 5
2FD

rV0
2d

(17)

where d is the cylinder diameter.
It is seen from eq. (16b) that the value of the

integrand is known as the solution is being sought
in terms of the viscosity and vorticity and hence
the evaluation of CDF poses no difficulty. On the
other hand, the estimation of the pressure contri-
bution, CDP, necessitates a knowledge of the pres-
sure on the surface of the cylinder and it was
calculated as follows. The r-component of the mo-
mentum balance (eq. 2) can be integrated with
respect to r (for u 5 0) from r 5 1 to r 5 r` to get:
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and the stagnation pressure at the front stagna-
tion point is obtained by substituting Vr 5 0 in eq.
(18):
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Now the pressure distribution on the surface of
the cylinder (r 51) can be written in terms of po
as:

pur51 5 p0 1
2n11

Re E
0

u ­~hv!

­r ur51 du (20)

Because the values of po, h, and v are known on
the surface of the cylinder, eq. (20) yields the
value of p|r 5 1 that can now be substituted in eq.
(16a) to evaluate the pressure drag coefficient
CDP.

In summary, therefore, once the values of h, c,
and v are known in the flow domain, one can
evaluate the dimensionless resistance to flow in
terms of the individual and total drag coefficients.
The numerical solution procedure to solve the
field equations to generate the point values of n,
c, and v is described briefly in the next section.

NUMERICAL SOLUTION PROCEDURE

The governing equations, namely the vorticity
and stream function eqs. (9 and 12), along with
the power-law viscosity eqs. (5 and 6), have been
solved by a finite difference scheme using the
false transient time-stepping method to obtain
the steady-state solution. For each time-step, new
values of vorticity are obtained using an implicit
time-stepping scheme, whereas the correspond-
ing compatible values of the stream function are
then obtained using the Gauss-Siedel iterative
method. These in turn permit the evaluation of
the corresponding viscosity values. This proce-
dure is repeated time-step after time-step until
the steady solution is reached. The time-stepping
was continued till the maximum change in the
value of stream function between two successive
time-steps was less than 10210. Sometimes an
under-relaxation factor of 0.5 was used in the
Gauss-Siedel iteration to achieve the desired level
of convergence. An implicit first order upwind
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scheme was used to discretize the convective
terms for low Reynolds number situations (Re
,; 0.1) and the explicit QUICK scheme was used
for higher values of the Reynolds number. The
Laplacian terms were discretized using the usual
center-difference scheme.

Because a finer grid is needed at and near the
boundaries to preserve reasonable levels of accu-
racy, a nonuniform grid was used. Such a grid
was generated using an exponential function to
generate half of the radial points, i.e., rI 5 exp
[ k(I-1)]. I51,2,. . . N/2, and then reflecting them
around the midpoint to complete the other half.
Uniform intervals in the u-direction were used.

For the values of the bed porosity smaller than
0.7, 401 3 41 grid points were used in the radial
and angular directions respectively. For e . 0.7, a
501 3 51 grid was used. All results reported
herein have been checked for mesh independence
by using at least two different meshes.

In broad terms, as the value of the power law
index decreased below the value of unity, it be-
came progressively more difficult to achieve the
required level of convergence, especially for the
values of n # 0.3. However in each case the con-
vergence criterion, applied for the stream func-
tion evaluation by the Gauss-Siedel method, was
Dc/c , 1024 and the overall criterion of 10210 was
employed. Only those values of drag coefficient
which had stabilized up to 3–4 significant digits
were accepted. More details regarding the numer-
ical solution procedure are available in another
recent study.17

RESULTS AND DISCUSSION

In this work, the governing equations have been
solved numerically to obtain detailed information
on the streamline and iso-vorticity lines, surface
viscosity distribution as well as on the resistance
to flow in terms of nondimensional drag coeffi-
cient for a range of values of the physical and
kinematic variables as: 0.4 # n # 1; 0.4 # e # 0.95
and 0.01 , Re , 10. At the outset, it is, however,
appropriate to validate the numerical solution
procedure and the choice of numerical parameters
such as the convergence criteria, mesh size, un-
der-relaxation factor, and so on as this will help
establish the accuracy of the new results for
power law fluids obtained in this study.

Validation of Numerical Solution Procedure

Because an analytical solution of the governing
equations is available for the flow of Newtonian
fluids (n 5 1) at very low Reynolds number (3 0)
which is given by17,19:

c 5 ~Cr3 1 Dr ln r 1 Er 1 F/r!sin u (21)

where the four unknown coefficient C,D,E,F are
evaluated by applying the boundary conditions
outlined in eqs. (13a) and (13b) as:

Table I Comparison Between Analytical and
Numerical Results for n 5 1 at Re 5 0.01

Analytical Numerical

« 5 0.4
CDP 95528.72 95497.05
CDF 29393.47 29397.50
CD 124922.19 124894.55

« 5 0.5
CDP 37749.4 37721.47
CDF 16182.10 16186.32
CD 53931.51 53907.80

« 5 0.7
CDP 7932.824 7921.92
CDF 5684.275 5698.03
CD 13617.099 13619.95

« 5 0.9
CDP 1938.11 1934.94
CDF 1862.28 1863.26
CD 3800.39 3798.20

Table II Values of Drag Coefficient as a
Function of « and n at Re 5 0.01

n 5 0.9 n 5 0.8 n 5 0.6 n 5 0.5

« 5 0.4
CDP 64507.19 41910.93 20338.71 11978.97
CDF 19694.92 12681.40 5993.97 3825.17
CD 84202.12 54592.33 26332.68 15804.15

« 5 0.5
CDP 27472.53 20005.74 10506.74 7112.79
CDF 11607.31 8309.85 4217.63 2931.69
CD 39079.84 28315.60 14724.20 10044.48

« 5 0.7
CDP 6475.68 5386.61 3610.44 2527.65
CDF 4490.88 3644.10 2295.37 1619.25
CD 10966.56 9030.71 5905.82 4146.90

« 5 0.9
CDP 1832.55 1735.55 1540.15 1355.48
CDF 1689.81 1539.75 1237.71 1067.94
CD 3522.36 3275.31 2777.86 2423.42

« 5 0.95
CDP 1279.89 1259.85 1168.03 1120.84
CDF 1181.25 1116.48 941.74 888.85
CD 2461.14 2376.33 2109.71 2009.69
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C 5 2
D

2~1 2 r`
4!

(22a)
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4!ln r` 2 r`

4 1 1
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4!

2~1 1 r`
4!

(22c)

F 5
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where r`, in turn, is related to the voidage via eq.
(15). Based on the stream function given by eq.
(21), the vorticity, friction, pressure, and total
drag coefficient respectively are given by:

v 5 2~8 Cr 1 ~2D/r!!sin u (23)

CDF 5
2p~8C 1 2D!

Re (24)

CDP 5 2
2p~8C 2 2D!

Re (25)

and

CD 5 CDF 1 CDP 5 ~8pD/Re! (26)

Hence, for a known value of voidage, i.e., e or r`,
one can readily evaluate the values of the individ-
ual and total drag coefficients using eqs. (24) to
(26). A comparison between the present numeri-
cal and analytical values of CDP, CDF,and CD for a
few values of voidage at Re 5 0.01 is shown in
Table I. An examination of this table shows that
the analytical and numerical values of the drag
coefficients are within 0.2% of each other. Simi-

Table III Effect of Reynolds Number on Drag Coefficient

n 5 1.0 n 5 0.8 n 5 0.6 n 5 0.5

« 5 0.5
CDP 1618.53 825.87 381.60 275.36

R 5 0.1 CDF 3775.05 1997.78 950.19 605.48
CD 5393.58 2823.65 1331.79 880.84

CDP 161.99 82.55 39.14 26.90
1 CDF 378.55 199.39 89.68 56.52

CD 540.54 281.93 128.82 83.42

CDP 32.61 16.72 7.46 5.41
5 CDF 77.91 42.6 19.93 12.28

CD 110.52 59.32 27.39 17.69

CDP 16.55 8.67 4.03 2.75
10 CDF 41.42 24.27 11.49 7.06

CD 57.97 32.93 15.52 9.81
« 5 0.9

CDP 186.46 147.24 108.35 89.11
0.1 CDF 194.05 174.15 135.55 113.17

CD 380.51 321.39 243.89 202.29

CDP 18.88 14.69 11.10 9.04
1 CDF 20.00 18.16 14.21 11.84

CD 38.88 32.85 25.31 20.88

CDP 4.435 3.35 2.44 1.84
5 CDF 5.44 5.06 3.86 2.97

CD 9.875 8.41 6.30 4.81

CDP 2.58 1.935 1.34 1.12
10 CDF 3.83 3.620 2.61 1.99

CD 6.41 5.555 3.95 3.11
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larly close results were also obtained for the other
values of voidage. In addition, a few results were
obtained at Re 5 0.001 and these values clearly
revealed that CD varies as 1/Re in this region and
that Re 5 0.01 is appropriate for investigating the
so-called creeping flow region. Aside from these
comparisons of integral quantities, extensive de-
tailed comparison between the analytical and nu-
merical values of c and v were also made in the
entire flow domain 1 # r # r` and the discrepancy
between the analytical and numerical values sel-
dom exceeded 0.1–0.15% thereby lending further
support to the reliability and accuracy of the nu-
merical solution procedure used in this study.
Similar comparisons between the present results
and those available in the literature at Re 5 10
revealed the two values to be within 0.2% of each
other thereby providing another independent val-
idation of the present results.

Based on the aforementioned comparisons and
our previous experience,25 it is perhaps fair to say
that the new results for power law fluids pre-
sented in the ensuing sections are accurate to
within 0.5–1%.

Results for Power Law Fluids

As mentioned earlier, extensive numerical results
on the individual and total drag coefficients as
well as on the detailed kinematics in terms of the
values of the surface vorticity, viscosity variation
on the cylinder surface, and streamline plots have
been obtained, and these are presented and dis-
cussed in the next section.

Drag coefficient

The values of CDP, CDF, and CD were calculated in
the following ranges of variables : 0.4 # e # 0.95;
1 . n . 0.4 and for Re 5 0.01, 0.1, 1, 5, and 10.
The values for Re 5 0.01 relating to the so-called
creeping flow region are summarized in Table II.
An inspection of this table suggests that, for a
fixed value of porosity (e), the values of the indi-
vidual as well as total drag coefficients decrease
below their value for Newtonian fluids with in-
creasing degree of shear thinning behavior, i.e.,
the lower the value of n, the lower is the resis-
tance to flow of the fluid. This is mainly due to the
fact that a major part of the surface of the solid

Figure 2 Surface vorticity plots. (a) Re 5 0.01, e 5 0.9; (b) Re 5 0.01, e 5 0.5; (c) Re
5 1, e 5 0.5; (d) Re 5 10, e 5 0.5
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cylinders is exposed to an effective viscosity that
is lower than that in the case of a Newtonian
fluid. Because the viscous forces in creeping flow
region are in equilibrium with the pressure
forces, both contributions to drag decrease with
the lowering of the power law index. Similarly, for
a fixed value of n, as expected the values of drag
coefficient decrease rapidly with the increasing
porosity that can be directly attributed to smaller
velocity gradients than those present in dense
systems. The intricate interplay between the role
of e and n on drag coefficient is further elucidated
by examining the ratio CDP/CDF as a function of e
for a range of values of n. It is clearly seen that in
dense systems this ratio hovers around ; 3-3.5
whereas it drops to about 1 at e 5 0.9 and the flow
behavior index exerts little influence on it. These
dependencies are qualitatively similarly to those
observed for the flow of power law fluids in gran-
ular beds of spherical particles.22–25

The results summarized in Table III elucidate
the role of increasing inertial effects on the value
of drag coefficient for a range of values of n, but
only for two values of porosity, namely, e 5 0.5

and e 5 0.9. It is clearly seen that the effect of
both the Reynolds number and the power law
index are much more prominent in more dense
packing of e 5 0.5 than that in the case of e 5 0.9.
For instance, for the case of a fixed value of e
5 0.5, the value of drag coefficient varies nearly
by a factor of 6 as the value of n changes from 1 to
0.5, the corresponding range of variation is only
about 2 for e 5 0.9. This is again attributable to
lower rate of deformation of fluid elements in
sparse systems. Some further insights into the
nature of flow can be gained from the iso-vorticity,
streamlines, and viscosity plots on the cylinder
presented in the next section.

Surface vorticity, viscosity variation on the surface
of the solid cylinder, and streamline plots

The effects of voidage, Reynolds number, and the
flow behavior index on the value of the dimension-
less surface vorticity are shown in Figures 2a–d.
An inspection of these figures reveals that the
surface vorticity is negative on the cylinder sur-
face and it displays perfect fore- and aft-symme-

Figure 3 Viscosity variation on the surface. (a) Re 5 0.01, e 5 0.9; (b) Re 5 0.01, e
5 0.5; (c) Re 5 1, e 5 0.5; (d) Re 5 10, e 5 0.5.
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try up to about Re ; 1 and a clear asymmetry sets
in at Re 5 10, as seen in Figure 2d. Furthermore,
for a given value of the Reynolds number and
porosity, the magnitude of the surface vorticity
increases with the increasing degree of non-New-
tonian behavior. Such plots can facilitate the es-
timation of the flow separation angle. In present
case, the Reynolds number of flow is, however, not
sufficiently high for flow separation to occur.

Figures 3a–d show the variation of the dimen-
sionless viscosity on the cylinder surface for a
range of combinations of porosity, Reynolds num-
ber, and power law index. An examination of
these figures shows that excepting small regions
near the front and rear stagnation points, the
surface of the cylinder is in contact with a fluid of
apparent viscosity that is not only lower than that
in the case of a Newtonian fluid but is also uni-
form over the surface of the cylinder, at least in
concentrated systems. This is in part responsible
for the lowering of the flow resistance in shear
thinning fluids. However, the region exposed to
uniform viscosity progressively reduces as the po-

rosity increases, and similarly, the variation be-
comes increasingly skewed as the Reynolds num-
ber of flow increases.

Finally, representative streamline and con-
stant vorticity lines are shown in Figure 4a–e for
a range of combination of e, Re, and n. Qualita-
tively these patterns are similar to those observed
for Newtonian fluids and the main features can be
summarized as follows: Up to about Re ; 1, the
stream lines and constant vorticity lines display
complete fore- and aft- symmetry thereby con-
firming the existence of the so-called creeping or
viscous flow. However, the lower the voidage, the
higher the Reynolds number up to which this
symmetry prevails. This is consistent with the
drag results reported herein as well as those re-
ported previously for granular beds of spheres. As
the value of the Reynolds number increases, the
above-said symmetry is progressively destroyed.
The lower values of n also result in the destruc-
tion of the symmetry in flow field; this is presum-
ably so due to the lower effective viscosity of the
fluid.

Figure 4 Iso-vorticity (bottom half) and streamline plots (top half). (a) Re 5 0.01, n
5 1, e 5 0.4; (b) Re 5 0.01, n 5 0.5, e 5 0.4; (c) Re 5 0.01, n 5 0.5, e 5 0.4; (d) Re 5 0.01,
n 5 0.5, e 5 0.4; (e) Re 5 0.01, n 5 0.5, e 5 0.4; (f) Re 5 10, n 5 0.5, e 5 0.4.
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Comparison with Previous Analytical and
Experimental Results

As mentioned previously, there is only one ana-
lytical study available for the creeping flow of
power law fluids within the framework of the free
surface cell model. In this analytical study, ap-
proximate upper and lower bounds were ob-
tained. It is thus appropriate to compare these
results with the present numerical results that
are regarded as being more accurate and reliable.
Such a comparison is shown in Table IV. Excel-
lent agreement between the two is seen to exist,
though the divergence between the two values
increases as the value of n drops below unity,
reaching about 10% for n 5 0.5, and it is likely to
increase further for values of n , 0.5. However,
the upper and lower bound results are restricted
to the creeping flow only. Furthermore, there ap-
pears to be a trend that the present numerical
results are close to the upper bound for weakly
shear thinning behavior, and these progressively
move towards the lower bound as the value of n
drops further.

The only other theoretical work is the numer-
ical study of Skartsis et al.15 who studied the
creeping flow of power law fluids through square
and staggered configurations and reported nu-
merical values of flow resistance for two values of
porosity, namely, e 5 0.43 and 0.68. It is not
possible to recalculate their results in the form
required here, but the present results can be ex-
pressed in terms of the so-called Kozeny constant
k*, defined by them as follows:

k* 5
«2n11

~1 2 «!n S n
6n 1 2D

n SCD Re
p D (27)

At the outset, it is useful to perform a detailed
comparison between the predictions and experi-
mental data available in the literature for n 5 1.

Figure 5 compares the values of the Kozeny
constant k as predicted by the present analysis
and the experimental values derived from the
flow in fibrous beds as compiled in the litera-
ture.13,14 Excellent agreement is seen to exist be-
tween the present analysis and the experimental
results. Similarly, several other empirical expres-
sions29–32 are available in the literature to repre-
sent the flow resistance for the creeping flow of
Newtonian fluids in fibrous beds. These have been
re-cast in terms of the Kozeny constant and are
presented here in Table V; The present numerical
predictions (n 5 1 and Re 5 0.01) are contrasted
in Table VI with the values calculated using the
expressions listed in Table V. Bearing in mind the
extent of experimental scatter as reflected in the
diverse predictions, an examination of this table
clearly shows excellent agreement between these
voluminous experimental results (represented via
the empirical correlations for k) and the present

Table IV Comparison Between the Present and Previous Approximate Analytical Results16 (In
Terms of L 5 CD Re) for Re 5 0.01

« 5 0.4 0.5 0.7 e 5 0.9

Present
Ref.
16* Present Ref. 16* Present

Ref.
16 Present

Ref.
16*

n 5 1 1248.95 1248.93 539.08 539.13 136.23 136.60 37.89 37.90
n 5 0.9 842.02 858.4 390.80 386.50 109.66 111.46 35.22 35.31
n 5 0.8 545.92 567.70 283.15 284.53 90.30 90.89 32.75 33.05
n 5 0.6 263.33 267.30 147.24 150.31 59.06 60.76 27.78 28.75
n 5 0.5 158.04 173.67 100.44 108.92 41.47 48.63 24.23 26.30

* Arithmetic mean of upper and lower bounds.

Figure 5 Comparison of present results with experi-
mental results for fibrous beds (n 5 1, Re 5 0.01).
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numerical predictions. Finally, we report on an-
other comparison between the experimental val-
ues of the permeability of nylon and aluminium
rod assemblies for a Newtonian glucose solution
with the present predictions, and this is shown in
Table VII. An examination of this table again
reveals fair correspondence between the experi-
mental and predicted values. From the aforemen-
tioned extensive comparisons, it is evident that
the simple cell model employed herein has been
moderately successful in predicting the resistance
to the flow of Newtonian fluids in a variety of
fibrous media. It is thus a fair expectation that
this approach is likely to yield acceptable results
for power law fluids as well. In most analogous
studies pertaining to non-Newtonian fluids, some
of the data available in the literature have been
obtained using test media that were not always
checked for possible viscoelastic effects whereas
some exclusively dealt with highly viscoelastic
media. Thus it is not appropriate to compare
them with the present predictions where the vis-
coelastic effects have been neglected altogether.
However, three of the test fluids used by Skartsis

et al.15 were shown to have very small values of
the fluid relaxation time. This coupled with the
low value of the Reynolds number (or flow veloc-
ity) will make the corresponding Deborah number
very small and viscoelastic effects must be negli-
gible under these conditions. A comparison be-
tween their experimental values and the present
numerical values of k* is shown in Table VIII
where good correspondence is seen to exist be-
tween the two values, although the experimental
values are consistently higher than the predicted
values of k*. This can safely be ascribed to the
small degree of viscoelasticity present in the test
fluids and to possible wall effects inherent in ex-
perimental results.

On the other hand, Adams and Bell6 and
Prakash et al.7 have reported experimental val-
ues of pressure drop for the flow of polymer solu-
tions normal to cylinders arranged in a range of
configurations thereby varying e in the range 0.4
to 0.6 and a generalized Reynolds number in the
range ;1 to 1000. Prakash et al.7 reconciled most
of the data and put forward the following single

Table V Empirical Expressions for k as Function of «

Reference Expression for k Remarks

Davies29
4«3

~1 2 «!1/2 $1 1 56~1 2 «!3% « , 0.98

4.4«3

~1 2 «!1/2 $1 1 56~1 2 «!3% « . 0.98

Carroll (as cited by Han30) 5 1 exp$14~« 2 0.8!% —

Ingmanson et al.31 3.5
«3

~1 2 «!1/2 $1 1 57~1 2 «!3% —

Chen32 0.484 S «3

1 2 «DHln
0.64

~1 2 «!1/2J21

« . 0.7

Table VI Comparison Between the Present Values and Empirical Expressions for k (listed in Table
V) for Re < 0.1

« 3 0.5 0.6 0.7 0.9 0.95 0.99

k
Davies29 5.65 6.26 6.30 9.74 15.44 42.7
Chen32 — — 5.07 5.56 8.30 25.55
Carroll (as cited in ref. 30) 5.01 5.06 5.25 9.05 13.16 19.3
Ingmanson et al.31 5.02 5.56 5.56 8.53 13.52 34.0
Present work 5.36 5.62 6.19 11.01 17.14 53.8
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equation for both Newtonian and power law flu-
ids:

f9 5 ~130/Re9! 1 0.7 (28)

where

Re9 5 Re F~n, «!

F~n, «! 5 $~~2n 1 1!/3n!n~12~1 2 «!/«2!n21

~1 2 «!%21

and

f9 5 ~2CD«3!/p

A comparison between the predictions of eq. (28)
and the present results for e 5 0.4, 0.5, and 0.7 is
shown in Figure 6. An examination of this figure
clearly shows that while there is no discernable
trend present with regard to the value of n and
that the present results show qualitatively simi-
lar dependence on Reynolds number as suggested
by equation (28); however, equation (28) is seen to
consistently over-predict the present results by
about 30-40% which is comparable to the uncer-
tainty of 25-30% inherent in equation (28) and
ascertained from the comparisons reported by
Prakash et al7. Furthermore, it is fair to add here
that considerable confusion exists in the litera-
ture regarding the numerical constants of 130
and 0.7 in equation (28). For instance, in another
study concerning the flow of Newtonian fluids
across an hexagonal array of cylinders, Dybbs and
Edwards34 reported a equation similar to equa-

tion (28), but with the numerical constants of 96
and 1.75 respectively. For the sake of comparison,
the predictions of their equation, i.e.,

f9 5 96/Re9 1 1.75 (29)

are also included in Figure 6 and the present
results are seen to be much closer to eq. (29) than
to the predictions of eq. (28). Furthermore, in
assessing the comparison shown in Figure 6, the
following factors must be borne in mind: the pre-
dictions are based on the assumption of long cyl-
inders (L/R 3 `) whereas in most experimental
study, this ratio is of the order of 15–20. Wall
effects have been neglected altogether in the anal-
ysis whereas the experimental results invariably
entail a contribution from wall effects. Finally,
considering the complexity of the flow geometry
coupled with the simplicity and highly idealized
nature of the model, the correspondence seen in
Figure 6 is believed to be acceptable and satisfac-
tory, at least for process engineering calculations
standpoint.

CONCLUSIONS

In this work, the steady cross-flow of power law
liquids at low to moderate Reynolds numbers past
an assemblage of infinitely long cylinders has
been studied to capture some features of non-
Newtonian fluid flow in fibrous media. The hydro-
dynamic interactions between cylinders have
been simulated using a simple cylinder-in-cylin-
der cell model. The governing equations have
been solved numerically using the finite differ-
ence method. Extensive theoretical results en-
compassing wide ranges of Reynolds number
(0.01 # Re # 10), bed voidage (0.4 # e # 0.95) and
the power law index (1 $ n $ 0.4) are presented
and discussed herein. Detailed comparisons with
the analytical results for the flow of Newtonian

Table VIII Comparison Between the
Experimental and Predicted Values of k* for
Power Law Fluids

« n k*

Experimental Present Theory

0.43–0.68 0.33 4.12–4.5 4.2
0.43–0.455 0.40 5.75 4.3

Table VII Comparison Between the Present
Predictions and Experimental Values of
Permeability K/d2 Sadiq et al.33

«

Value of K/d2

Experimental Present Value

Nylon rods
0.388 7.5 3 1024 1.4 3 1023

0.49 3.05 3 1023 3.87 3 1023

0.592 9.67 3 1023 9.9 3 1023

Aluminium Rods
0.417 1.3 3 1023 1.9 3 1023

0.514 3.88 3 1023 4.8 3 1023

0.611 9.95 3 1023 11.7 3 1023
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fluids at low Reynolds number suggest that the
present numerical results are accurate to within
0.4%. Based on an extensive analysis of drag re-
sults and the detailed streamline patterns, the
creeping flow region is believed to persist up to
about the value of Re ; 1. The total drag coeffi-
cient draws varying proportions of contributions
from pressure and friction drag coefficients de-
pending upon the values of n, e, and Re, thereby
indicating complex interplay between the fluid
characteristics, bed structure, and kinematics of
flow.

The extensive comparisons with the experi-
mental results available in the literature lend
further support to the validity of the theoretical
results reported herein. The preliminary compar-
isons are affirmative and encouraging, at least in
the range of ;0.4 # e # ; 0.7.

NOMENCLATURE

CD drag coefficient (-)
CDF friction drag coefficient (-)
CDP pressure drag coefficient (-)
d cylinder diameter (m)
FD drag force (N)

f friction factor (-)
k* Kozeny constant (-)
m power-law consistency (Pa.sn)
n power-law index (-)
p pressure (Pa)
r radial coordinate (m)
r` dimensionless cell radius (-)
R cylinder radius (m)
R` cell radius (m)
Re Reynolds number (-)
Re’ modified Reynolds number (-)
Vr,Vu component of velocity (m/s)
Vo superficial velocity (m/s)

GREEK LETTERS

e bed voidage (-)
eij components of the rate-of-deformation tensor

(s-1)
h viscosity (Pa.s)
r fluid density (kg/m3)
tij components of extra stress tensor (Pa)
c stream function (m2/s)
v vorticity (s-1)
2II second invariant of the rate-of-deformation

tensor (s-2)

Figure 6 Comparison of present results with eqs. (28) and (29).
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